Problem（VSOP＊＊＊）：Let ABC be a normal triangle， B^{\prime} the middle of AC and C^{\prime} the middle of AB ．We want to place 3 special points on this triangle and prove that they are on the same line．

1．Determine and place the point I defined by the vector equation ： $2 \overrightarrow{I C^{\prime}}+\overrightarrow{I B^{\prime}}=\vec{O}$
2．Determine and place the point D defined by the vector equation： $3 \overrightarrow{D A}+2 \overrightarrow{D B}=\vec{O}$
3．Determine and place the point E defined by the vector equation ： $2 \overrightarrow{E B}+\overrightarrow{E C}=\vec{O}$
4．Prove by using a vector equation that the 3 points $\mathbf{A}, \mathbf{I}, \mathbf{E}$ ，are on the same line．
5．Prove by using a vector equation that the 3 points $\mathbf{C}, \mathbf{I}, \mathbf{D}$ ，are on the same line．

1． $2 \overrightarrow{I C^{\prime}}+\overrightarrow{I B^{\prime}}=\vec{O} \Leftrightarrow 2\left(\overrightarrow{I B^{\prime}}+\overrightarrow{B^{\prime} C^{\prime}}\right)+I B^{\prime}=\vec{O} \Leftrightarrow 3 \overrightarrow{I B^{\prime}}+2 \overrightarrow{B^{\prime} C^{\prime}}=\vec{O} \Leftrightarrow 3 \overrightarrow{B^{\prime} I}=2 \overrightarrow{B^{\prime} C^{\prime}} \Leftrightarrow \overrightarrow{B^{\prime} I}=\frac{2}{3} \overrightarrow{B^{\prime} C^{\prime}}$
2． $3 \overrightarrow{D A}+2 \overrightarrow{D B}=\vec{O} \Leftrightarrow 3 \overrightarrow{D A}+2(\overrightarrow{D A}+\overrightarrow{A B})=\vec{O} \Leftrightarrow 5 \overrightarrow{D A}+2 \overrightarrow{A B}=\vec{O} \Leftrightarrow 5 \overrightarrow{A D}=2 \overrightarrow{A B} \Leftrightarrow \overrightarrow{A D}=\frac{2}{5} \overrightarrow{A B}$
3． $2 \overrightarrow{E B}+\overrightarrow{E C}=\vec{O} \Leftrightarrow 2 \overrightarrow{E B}+\overrightarrow{E B}+\overrightarrow{B C}=\vec{O} \Leftrightarrow 3 \overrightarrow{E B}+\overrightarrow{B C}=\vec{O} \Leftrightarrow 3 \overrightarrow{B E}=\overrightarrow{B C} \Leftrightarrow \overrightarrow{B E}=\frac{1}{3} \overrightarrow{B C}$
4．To prove that the 3 points are on a same line we must find a number k such that $\overrightarrow{A I}=k \overrightarrow{A E}$ To do so we can find $\overrightarrow{A I}=x \overrightarrow{A B}+y \overrightarrow{A C}$ and $\overrightarrow{A E}=x^{\prime} \overrightarrow{A B}+y^{\prime} \overrightarrow{A C}$ then prove that $x=k \cdot x$＇and $y=k \cdot y^{\prime}$ From（1） $2 \overrightarrow{I C^{\prime}}+\overrightarrow{I B^{\prime}}=\vec{O}$ we get

$$
2\left(\overrightarrow{I A}+\overrightarrow{A C^{\prime}}\right)+\left(\overrightarrow{I A}+\overrightarrow{A B^{\prime}}\right)=\vec{O} \Leftrightarrow 3 \overrightarrow{I A}+2 \overrightarrow{A C^{\prime}}+\overrightarrow{A B^{\prime}}=\vec{O} \Leftrightarrow 3 \overrightarrow{A I}=\overrightarrow{A B}+\frac{1}{2} \overrightarrow{A C} \Leftrightarrow \overrightarrow{A I}=\frac{1}{3} \overrightarrow{A B}+\frac{1}{6} \overrightarrow{A C}
$$

From（3） $2 \overrightarrow{E B}+\overrightarrow{E C}=\vec{O}$ we get

$$
2(\overrightarrow{E A}+\overrightarrow{A B})+(\overrightarrow{E A}+\overrightarrow{A C})=\vec{O} \Leftrightarrow 3 \overrightarrow{E A}+2 \overrightarrow{A B}+\overrightarrow{A C}=\vec{O} \Leftrightarrow \overrightarrow{A E}=\frac{2}{3} \overrightarrow{A B}+\frac{1}{3} \overrightarrow{A C}
$$

Hence we have $\overrightarrow{A I}=\frac{1}{2} \overrightarrow{A E}$ which proves that A，I，E are on the same line（I is the midpoint of［AE］）
5．Same method ：let＇s prove that $\overrightarrow{I D}=k \overrightarrow{I C}$ by de－composing and recomposing \ldots
We have $\overrightarrow{I C}=\overrightarrow{I A}+\overrightarrow{A C}=\left(-\frac{1}{3} \overrightarrow{A B}-\frac{1}{6} \overrightarrow{A C}\right)+\overrightarrow{A C}=-\frac{1}{3} \overrightarrow{A B}+\frac{5}{6} \overrightarrow{A C}$
We also have $\overrightarrow{I D}=\overrightarrow{I A}+\overrightarrow{A D}=\left(-\frac{1}{3} \overrightarrow{A B}-\frac{1}{6} \overrightarrow{A C}\right)+\frac{2}{5} \overrightarrow{A B}=\frac{1}{15} \overrightarrow{A B}-\frac{1}{6} \overrightarrow{A C}$
Hence we have $\overrightarrow{I D}=-\frac{1}{5} \overrightarrow{I C}$ which proves that D，I，C are on the same line．

