Problem 1 ：use a compass and a ruler to carefully build the circle inscribed in this triangle（show the construction lines and explain your construction）．

Solution ：by definition any point of the bisector of an angle is situated at an equal distance of the sides of the angle．Therefore the point O intersection of the three bisectors is at an equal distance from the sides of the triangle ：$O I=O J=O K$ then the circle centered in O and of radius $R=O I$ is tangent to the three sides of the triangle．This cirle is called the inscribed circle of $A B C$ ．

Problem 2 ：given the circle（C），and a point I outside（C），use a compass and a ruler to carefully construct the two tangent lines to the circle from I． ［find the points K and K^{\prime} on（C）so that the lines（IK）and（IK＇）be tangent to（C）］

Solution ：the contact points T and S with（C）are at the intersection of the circle of diameter OI with（C），because the triangles OIT and OIS must be rectangular triangles in T and S ．

Mathematics－Geometry＋＋Junior 8 Assignment \＃2＝＞October 28 －p．2／3

Problem 3 ：given the triangle ABC ，let H be the interception of its Heights，and O be the center of the circumscribed circle， U the middle of BC ，and G the intersection of OH and AU ．
1° ）Prove carefully（on back of the page）that $\mathrm{GH}=2 \mathrm{GO}$ ．
2° ）Show why G is the center of gravity of the triangle．
［ The line joining O, G, H is called Euler＇s line of the triangle］

Solution ：we already know that $H B A$＇C is a parallelogram．Therefore U ，middle of ［BC］is also the middle of $H A$＇．
Hence［OU］is the line joining the middle point of the sides of the triangle AHA＇，which means that OU is parallel to $A H$ and $O U=1 / 2 \mathrm{AH}$ ．
Then the triangles GOU and GHA are similar triangles（two equal angles）with ratio $1 / 2$ ．Hence $G H=2 G O$ and $G A=2 G U$ which proves that G is the center of gravity of the triangle $A B C$（well known characteristic property of G ）．
Conclusion ：in any triangle ABC，the orthocenter，the center of gravity and the center of the circumscribed circle are always on the same line，called ＂Euler＇s line＂of the triangle．

Mathematics－Geometry＋＋Junior 8 Assignment \＃2＝＞October 28 －p．3／3

Problem 4 ：given the triangle ABC ，let H be the intercection of its Heights，and O be the center of the circumscribed circle， L the middle of AH ，and P be the middle of OH ．
1° ）Prove carefully（on back of the page）that $\mathrm{PL}=\mathrm{PU}=\mathrm{PI}$ ．
2° ）By the same method prove that the circle centered in P and of $\mathrm{r}=\mathrm{R} / 2$ where R is the radius of（C），contains the 9 points ：I，J，K，U，V，W，L，M，N （this circle is named＂Euler circle＂of the triangle）

Solution ：The quadrilateral（OUHL）is a parallelogram，because the two sides $O U$ and LH are both parallel and equal．（see problem 3）．
Then the intersection of the diagonals of（OUHL）is the middle of［UL］ therefore $P U=P L$ ；and $P L=P I$ because（UIL）is a right triangle in I ． In the parallelogram（OULA），one can see that $L U=O A=R$（radius of the circle circumscribed to $A B C$ ．
Hence the circle（ E ）centered in P（middle of OH ）and of radius $r=R / 2$ contains the 3 points U，I，L．
By the same reasoning applied to the other sides of the triangle we can say that（ E ）contains the other points K, W, M and J, V, N ．
Conclusion ：in any triangle $A B C$ ，the circle centered in the middle of［OH］and of radius half or that of circumscribed cercle（C），contains the 9 points I，J，K，U，V，W，L，M，N．This circle is named＂Euler＇s Circle＂of the triangle．

