北京景山学校
jiguanglaoshi＠gmail．com

Mathematics－Geometry＋＋Junior 8 p． $1 / 3$
Solutions of Assignment \＃1 of October 21

Problem 1：use a compass and a ruler to carefully build the circle circumscribed to this triangle（show the construction lines and explain your construction）．

Construction ：
1．Draw the bisector of $[\mathrm{BC}]$ in the middle A^{\prime} of $[\mathrm{BC}]$
2．Draw the bisector of［CA］in the middle B＇of［CA］
3．Let O be the intersection of the two bisectors．
Then by definition of the bisector we have ：

$$
[\mathrm{OB}]=[\mathrm{OC}]=[\mathrm{OA}]
$$

Hence the circle of center O and radius $\mathrm{R}=\mathrm{OA}$ is circumscribed to the triangle ABC ．

Theorem ：

The three bisectors of the sides of a triangle intersect in the same point O which is the center of the circle circumscribed to the triangle．

北京景山学校
jiguanglaoshi＠gmail．com

Mathematics－Geometry＋＋Junior 8 p． $2 / 3$
Solutions of Assignment \＃1 of October 21

Problem 2 ：given the triangle ABC ，let H be the interception of its heights． Prove carefully（on back of the page）that the interception D of AH with the circle circumscribed to the triangle ABC is symmetrical to H with respect to （BC）．（prove that $I H=I D$ ）．

Solution I（using the parallelograms）
Let $\mathrm{A}^{\prime}=\operatorname{Sym}(\mathrm{A}) / 0$ and $\mathrm{U}=$ middle of BC

$$
\Rightarrow\left(\mathrm{A}^{\prime} \mathrm{C}\right) / /(\mathrm{B} \mathrm{H})
$$

$$
\text { and }\left(\mathrm{A}^{\prime} \mathrm{B}\right) / /(\mathrm{C} \mathrm{H})
$$

$\therefore\left(\mathrm{A}^{\prime} \mathrm{BHC}\right)$ is a parallelogram
$\Rightarrow U=$ middle of $\left[A^{\prime} H\right]$
$(\mathrm{AD}) \perp\left(\mathrm{DA}^{\prime}\right) \Rightarrow \mathrm{HDA}^{\prime}$ rectangle triangle
then $\mathrm{UD}=\mathrm{UH}$ which implies that $\mathrm{IH}=\mathrm{ID}$ ．

北京景山学校
jiguanglaoshi＠gmail．com

Mathematics－Geometry＋＋Junior 8 p． $3 / 3$
Solutions of Assignment \＃1 of October 21

Problem 2 ：given the triangle ABC ，let H be the interception of its heights． Prove carefully（on back of the page）that the interception D of AH with the circle circumscribed to the triangle ABC is symmetrical to H with respect to （BC）．（prove that $I H=I D$ ）．

Solution II（using the inscribed angles）
Lets draw the segment CD
Lets prove that the Rectangle triangles $\Delta(\mathrm{HCl})=\Delta(D C I)$ ．
The inscribed angles $B \hat{C} D={ }_{B A} D$ because they intercept the same arc $\widehat{B D}$ and the two angles $B \hat{A} D=B \hat{H} D$ because their sides are perpendicular．

Therefore $B \hat{C} D=B \hat{H} D$
and the two rectangle triangles having one common side CI
and one acute angle equal are equal triangles
Hence the the other sides are equal ： $\mathrm{IH}=\mathrm{ID}$ ．

