Construction of the common tangents to $\mathbf{2}$ circles

Problem I ：external common tangent ：use the figure below to construct the points of external contact between the circle and their common external tangent line．Explain carefully your construction．

Solution ：for any point M chosen on the first circle $\left(C_{l}\right)$ and the corresponding point N on（C2）such that（ $B N$ ）be parallel to（AM）in the same direction． The line $(M N)$ cuts the line $(A B)$ in one point I outside the two circles． Hence the triangles IAM and IBN are similar（two equal angles）． This remains true whatever be M on $\left(C_{1}\right)$ ，and especially when M is on the point S and N on T ，that we are looking for．
Then to build S and T we need to proceed as follow ：
－choose M on $\left(C_{1}\right)$ and draw（ $B M$ ）／／to（ $A M$ ）．
－draw the line of the centers $(A B)$ and mark I at the intersection of（ $A B$ ） and（MN）．
－Then we are back to the problem of drawing a tangent line to a circle from one outside point，then ：
－find the middle of［IA］and draw the circle（ π ）of diameter［IA］ which cuts $\left(C_{l}\right)$ in S and U ．
－draw the line（IS），which touches the circle $\left(C_{2}\right)$ in T ．
－（IS）is the first common tangent line to the two circles．
－（IU）is the second common tangent line to the two circles．

Problem II ：Internal common tangent ：use the figure below to construct the points of external contact between the circle and their common internal tangent line．Explain carefully your construction．

Solution ：similarly to the previous construction，let＇s pick a point M on $\left(C_{I}\right)$ and the corresponding point N on $\left(C_{2}\right)$ such that（ $B N$ ）be parallel to $(A M)$ but in the opposite direction．The line（ $M N$ ）cuts the line（ $A B$ ）in J，between A and B ． Hence the triangles（JAM）and（JBN）are similar（two equal angles）． This remains true whatever be M on $\left(C_{1}\right)$ ，and especially when M is on the point S ，and N comes on R ，that we are looking for．
Then to build S and R we need to proceed as follow ：
－choose M on $\left(C_{1}\right)$ and draw（BM）／／to（AM）in opposite directions．
－draw the line of the centers $(A B)$ and mark J at the intersection of $(A B)$ and（MN）．
－Then we are back to the problem of drawing a tangent line to a circle from one outside point，then ：
－find the middle of［IB］and draw the circle of diameter［IA］ which cuts $\left(C_{2}\right)$ in S and P ．
－draw the line（IS），which touches the circle $\left(C_{l}\right)$ in R ．
－（IS）is the first common internal tangent line to the two circles．
－（IP）is the second common tangent line to the two circles in P and Q ．

Solution II for the construction of the common tangent．

1．Draw the line of the centers（AB），mark the points M ，middle of $[A B]$ ，and N ．
2．Draw a circle（ C_{3} ）centered in N of same radius R_{1} than the circle $\left(C_{1}\right)$ ． It cuts［AB］in I ．

3．Draw the circle $\left(C_{4}\right)$ centered in B and of radius $r=R_{2}-R_{1}$ ．
4．Draw the circle $\left(C_{5}\right)$ centered in M of diameter［AB］，it cuts $\left(C_{4}\right)$ in P ．
5．Draw the line $(A P)$ ，which is tangent to the circle $\left(C_{4}\right)$ ．
6．Draw the line $(B P)$ which is perpendicular to $(A P)$ ．It cuts $\left(C_{2}\right)$ in Q ．
7．Draw the parallel line (T) to $(A P)$ by Q ．
8．Draw the perpendicular line to（ T ）by A．It cuts（ T ）in R ．
Hence the quadrilateral（APQR）is a rectangle（opposite sides are parallel and one right angle）．Then we have $[A R]=[P Q]=R_{1}$ ．which means that R belongs to $\left(C_{1}\right)$ and that (T) is also tangent to $\left(C_{l}\right)$ ．

