Euler＇s line proof by using vector calculations only．

Let ABC be a regular triangle， U the midpoint of BC, V the midpoint of AB ，and W the midpoint of AC ．

1．Let M be the point defined by the vectorial equation $\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\vec{O}$
Show WHY this point M is the intersection G of the three median lines AU，BV，CW．
2．Let N be the point defined by the vectorial equation $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O N}$
Show WHY this point is the intersection H of the three heights AI，BK，CJ
3．From the above vectorial relations prove that $\mathrm{O}, \mathrm{G}, \mathrm{H}$ are on the same line（Euler＇s line）．
1．We can write ： $\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\vec{O} \Leftrightarrow 3 \overrightarrow{M A}+\overrightarrow{A B}+\overrightarrow{A C}=\vec{O} \Leftrightarrow 3 \overrightarrow{M A}+2 \overrightarrow{A U}=\vec{O} \Leftrightarrow \overrightarrow{A M}=\frac{2}{3} \overrightarrow{A U}$ Similarly $\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\vec{O} \Leftrightarrow 3 \overrightarrow{M B}+\overrightarrow{B A}+\overrightarrow{B C}=\vec{O} \Leftrightarrow 3 \overrightarrow{M B}+2 \overrightarrow{B W}=\vec{O} \Leftrightarrow \overrightarrow{B M}=\frac{2}{3} \overrightarrow{B W}$ and $\overrightarrow{M A}+\overrightarrow{M B}+\overrightarrow{M C}=\vec{O} \Leftrightarrow 3 \overrightarrow{M C}+\overrightarrow{C A}+\overrightarrow{C B}=\vec{O} \Leftrightarrow 3 \overrightarrow{M C}+2 \overrightarrow{C V}=\vec{O} \Leftrightarrow \overrightarrow{C M}=\frac{2}{3} \overrightarrow{C V}$ Finally M belongs to the three medians $A U, B W$ ，and $C V$ ，so by definition $M=G$（c．of Gravity）．

2．We can write ： $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O N} \Leftrightarrow \overrightarrow{O A}+2 \overrightarrow{O U}=\overrightarrow{O N} \Leftrightarrow 2 \overrightarrow{O U}=\overrightarrow{A O}+\overrightarrow{O N} \Leftrightarrow 2 \overrightarrow{O U}=\overrightarrow{A N}$ hence the line AN is parallel to OU therefore AN is the height AI of the triangle ABC ．
Similarly $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O N} \Leftrightarrow \overrightarrow{O B}+2 \overrightarrow{O W}=\overrightarrow{O N} \Leftrightarrow 2 \overrightarrow{O W}=\overrightarrow{B O}+\overrightarrow{O N} \Leftrightarrow 2 \overrightarrow{O W}=\overrightarrow{B N}$ hence the line BN is parallel to OW therefore BN is the height BK of the triangle ABC ． and $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O N} \Leftrightarrow 2 \overrightarrow{O V}+\overrightarrow{O C}=\overrightarrow{O N} \Leftrightarrow 2 \overrightarrow{O V}=\overrightarrow{C O}+\overrightarrow{O N} \Leftrightarrow 2 \overrightarrow{O V}=\overrightarrow{C N}$ hence the line CN is parallel to OV therefore BN is the height CJ of the triangle ABC ．
Finally N belongs to the three heights，so by definition $\mathrm{N}=\mathrm{H}$ orthocenter of the triangle ABC
3．We have now ： $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\vec{O}$ and $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{O H}$ then $\overrightarrow{G A}+\overrightarrow{G B}+\overrightarrow{G C}=\vec{O} \Leftrightarrow 3 \overrightarrow{G O}+\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\vec{O} \Leftrightarrow 3 \overrightarrow{G O}+\overrightarrow{O H}=\vec{O} \Leftrightarrow \overrightarrow{O G}=\frac{1}{3} \overrightarrow{O H}$ which is proving that the three points $\mathrm{O}, \mathrm{G}, \mathrm{H}$ are on the same line．

