http：／／beijingshanmaths．org jiguanglaoshi＠gmail．com

English－Maths 2011－12－Calculus＋＋－Senior 2.4
Memo－Nov 04 －p．1／1

## Asymptotes

## 渐近线－渐近線

Definition ：a curve $(\Delta)$ is said to be an asymptote of curve（C）when the following is true： as one moves along（C）in some direction，the distance between it and the asymptote（ $\Delta$ ） eventually becomes smaller than any distance that one may specify．
If a curve（C）has the curve（ $\Delta$ ）as an asymptote，one says that（C）is asymptotic to（ $\Delta$ ）． Similarly（ $\Delta$ ）is asymptotic to $(C)$ ，so $(C)$ and $(\Delta)$ are called asymptotic．
Essentially，a linear asymptote is a straight line，a line that a graph approaches，but does not become identical to．

## 1．Horizontal asymptote ：

the line $y=b$ is a horizontal asymptote for $\left(C_{f}\right)$ if $\lim _{x \rightarrow+\infty} f(x)=b$
or $\lim _{x \rightarrow-\infty} f(x)=b$

## 2．Vertical asymptote：

the line $x=a$ is a Vertical asymptote for $\left(C_{f}\right)$ if

$$
\lim _{x \rightarrow a} f(x)= \pm \infty
$$


or $\lim _{x \rightarrow a^{+}} f(x)= \pm \infty$
or $\lim _{x \rightarrow a^{-}} f(x)= \pm \infty$

## 3．Oblique asymptote ：

the line $y=a x+b$ is an oblique asymptote for $\left(C_{f}\right)$ if

$$
\lim _{x \rightarrow+\infty}[f(x)-(a x+b)]=0
$$

or $\lim _{x \rightarrow-\infty}[f(x)-(a x+b)]=0$
$N B:$ if $a=0$ then the asymptote is horizontal


4．Position of $\left(\mathbf{C}_{\mathbf{f}}\right)$ with respect to its asymptote（oblique or horizontal）：
If $\lim _{x \rightarrow \pm \infty}[f(x)-(a x+b)]=0^{+}$then $\left(C_{f}\right)$ is above（ $\Delta$ ）
If $\lim _{x \rightarrow \pm \infty}[f(x)-(a x+b)]=0^{-}$then $\left(C_{f}\right)$ is under $(\Delta)$
5．Theorem ：If $\lim _{x \rightarrow+\infty} \frac{f(x)}{x}=a$ then the line $y=a x$ is an asymptotic direction for $\left(C_{f}\right)$
If $\lim _{x \rightarrow \pm \infty}[f(x)-a x]=b$ then the line $y=a x+b$ is an asymptote for $\left(C_{f}\right)$
－To find an asymptote for an infinite branch（ $\mathrm{x}->\infty$ and／or $\mathrm{y}->\infty$ ）then one must start by calculate the $\lim _{x \rightarrow \pm \infty} \frac{f(x)}{x}$ ．

