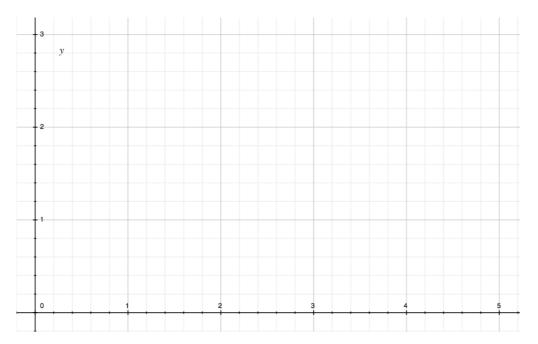
<u>http://beijingshanmaths.org</u> Name : jiguanglaoshi@gmail.com . Grade : Senior 1+ - Assignment # 6: Nov. 14 2011

Let *f* be the function defined by $f(x) = -\frac{1}{2}x + 2$ for $x \ge 0$.

Study of the sequence (u_n) defined by $u_{n+1} = f(u_n) = -\frac{1}{2}u_n + 2$; $n \ge 1$ and $u_0 = 0$.


1. Graph the function f on $[0; +\infty [$ and draw the first terms of the sequence (u_n) . Find the coordinates of the intersection of (Cf) with the first bisector (y=x)Indicate from the graph whether or not the sequence is :

- i. Monotonous (if yes how) :
- ii. Bounded (if yes, what are the boundaries ?)
- iii. Does-it seam to have a limit (if yes which one is it?)?

2. Let
$$v_n = u_n - \frac{4}{3}$$
 for any $n > 0$.

Show that the new sequence (v_n) is a geometric sequence :

- 1. Find its first term and its reason.
- 2. Find the expression of v_n directly in function of n.
- 3. Deduct the limit of v_n .
- 4. Find the expression of u_n in function of v_n
- 5. Find the limit of u_n
- 6. Check the result on your graph.

