## Definition & Construction of a Parabola (Part 1)

Let *f* be the function defined by :  $f: x \mapsto \overline{ax^2}$  (a \neq 0)

I- Algebraic properties :

1°) *Even function* : for any  $x \in \mathbb{R}$ ,

f(-x)=f(x).2°) Rate of growth *non constant* :  $T_{[f,(x_1,x_2)]} = \frac{f(x_2) - f(x_1)}{x_2 - x_1} = a(x_2 + x_1)$ 

3°) Sign of T = Sign of a on  $[0; +\infty[$ , and Sign of T = Sign of (-a) on  $]-\infty; 0]$ 

 $4^{\circ}$ ) Chart of the Variations of f:



## **II- Geometric Properties :**

1°) The curve has (Oy) as an axis of symmetry. For that reason the curve is called a Parabola.

2°) The Parabola is tangent to the (Ox) Axis in O.

 $3^{\circ}$ ) The Parabola passes through the point A(1; a).

 $4^{\circ}$ ) If a > 0 the Parabola concavity is directed towars the positive y :

(as one can say the *«* the bowl can hold water *»*)

If a < 0 the Parabola concavity is directed towards the négative y :

(as one can say the *«* the bowl cannot hold water »)

5°) The Parabola intercepts the 1st bisector line (y = x) at point B(1/a; 1/a)

6°) On B the Parabola is tangent to the line joining B to the middle of the segment located under the tangent, which is the point of abscissa 1/2a

7°) By symmetry with respect to Oy we get the points A'(-1; a) and B'(-1/a; 1/a)

 $8^{\circ}$ ) If a is very small compared to the unity ( $a \ll 1$ ), the parabola is widely opened, inversely

if a >>1 the parabola is very narrow around the axis of symmetry.

9°) The parabola contains absolutely no piece of a straight line.

10°) The branches spread indefinitely in the direction of the Oy axis.



## Second degree functions (Part 2)

Second degree functions are in the general form :  $f:\overline{x \mapsto ax^2 + bx + c}$  with  $a \neq 0$ This expression can take any of the following forms :

- $\begin{array}{ll} (\mathbf{P}_{1}) & y = a \ x^{2} \\ (\mathbf{P}_{2}) & y = a \ x^{2} + H \\ (\mathbf{P}_{3}) & y = a \ (x L)^{2} \\ (\mathbf{P}_{4}) & y = a \ (x L)^{2} + H \\ (\mathbf{P}_{5}) & y = a \ (x x')(x x'') \\ (\mathbf{P}_{6}) & y = a \ x^{2} + bx + c \quad (trinomial) \end{array}$
- 1°) Transformation from (P<sub>1</sub>) to (P<sub>2</sub>) is a **Translation** defined by the vertical vector  $\vec{H_j}$  (parallel to the (Oy) axis. (P<sub>2</sub>) intercepts (Oy) in y = H. ( $H = \ll Hight \gg ; L = \ll Length \gg$ )
- 2°) Transformation from (P<sub>1</sub>) to (P<sub>3</sub>) is a **Translation** defined by the horizontal vector L.  $\vec{i}$  (parallel to the (Ox) axis)

3°) Transformation from (P<sub>1</sub>) to (P<sub>4</sub>) is a **Translation** of vector  $\vec{V} = L.\vec{i} + H.\vec{j}$ The Parabola (P<sub>4</sub>) has a vertex in O'(L ;H). Let  $\mathbf{X} = \mathbf{x} - \mathbf{L}$  and  $\mathbf{Y} = \mathbf{y} - \mathbf{H}$  then  $\mathbf{Y} = \mathbf{a} \mathbf{X}^2$  which means that (P<sub>4</sub>) is Symmetrical whith respect

of the axis defined by x = L (parallel to (Oy)) (P<sub>4</sub>) is drawn in the system (O'X,O'Y) just like (P<sub>1</sub>) in the system (Ox,Oy).

4°) The Parabola ( $P_5$ ) intercepts the axis (Ox) in x' and x'', its **vertex** is then at

$$S(L;H)$$
 of abscissa  $L = \frac{x' + x''}{2} = -\frac{b}{2a}$  and ordinate  $H = f(L)$ 

5°) To build the parabola ( $P_6$ ) one can either :

- a. use the form  $(P_4)$  by breaking the trinomial in that « canonic » form.
- b. find the coordinates of the vertex  $O'\{L= -b/2a; H=f(L)\}$  then find the Ox and Oy intersection pts : on (Oy) : (x = 0; y = c) and (Ox) solutions of  $a x^2 + bx + c = 0$  (if any).

**Example** : let (P) be the Parabola defined by  $y = 1/4 (x-2)^2 + 3$  then L=2; H=3; Y =  $\frac{1}{4} X^2$ 

