Sequences defined by recurrence (3)

Problem I : Let f be the function defined by $f(x)=\frac{4 x-2}{x+1}$ for $\mathrm{x} \geq 0$.
Study of the sequence $\left(v_{n}\right)$ defined by $v_{n+1}=f\left(v_{n}\right)=\frac{4 v_{n}-2}{v_{n}+1} ; \mathrm{n} \geq 1$ and $v_{0}=4$.

1. Graph the function f on $\left[0 ;+\infty\left[\right.\right.$ and draw the first terms of the sequence $\left(v_{n}\right)$.

Find the coordinates of the intersection of (Cf) with the first bisector $(y=x)$
Indicate from the graph whether or not the sequence is:
i. Monotonous (if yes how) :
ii. Bounded (if yes, what are the boundaries?)
iii. Does-it seam to have a limit, if yes which one is it ?
2. Same questions if $v_{0}=0$, or $v_{0}=1$, or $v_{0}=1.5$ or $v_{0}=2$.
3. Let $w_{n}=\frac{v_{n}-2}{v_{n}-1}$ for any $n>0$.

Show that the new sequence $\left(\mathrm{w}_{\mathrm{n}}\right)$ is a geometric sequence :

1. Find its first term and its reason.
2. Find the expression of w_{n} directly in function of n.
3. Deduct the limit of w_{n}.
4. Find the expression of v_{n} in function of w_{n}
5. Find the limit of v_{n}
6. Check the result on your graph.

Problem II : Let f be the function defined by $f(x)=-\frac{1}{2} x+2$ for $\mathrm{x} \geq 0$.
Study of the sequence $\left(u_{n}\right)$ defined by $u_{n+1}=f\left(u_{n}\right)=-\frac{1}{2} u_{n}+2 ; \mathrm{n} \geq 1$ and $u_{0}=0$.

1. Graph the function f on $\left[0 ;+\infty\right.$ [and draw the first terms of the sequence $\left(\mathrm{u}_{\mathrm{n}}\right)$.

Find the coordinates of the intersection of (Cf) with the first bisector $(\mathrm{y}=\mathrm{x})$
Indicate from the graph whether or not the sequence is :
i. Monotonous (if yes how) :
ii. Bounded (if yes, what are the boundaries?)
iii. Does-it seam to have a limit (if yes which one is it?)?
iv. Is this sequence Arithmetic or Geometric or neither?
2. Let $v_{n}=u_{n}-\frac{4}{3}$ for any $n>0$.

Show that the new sequence $\left(v_{n}\right)$ is a geometric sequence :

1. Find its first term and its reason.
2. Find the expression of v_{n} directly in function of n.
3. Deduct the limit of v_{n}.
4. Find the expression of u_{n} in function of v_{n}
5. Find the limit of u_{n}
6. Check the result on your graph.

