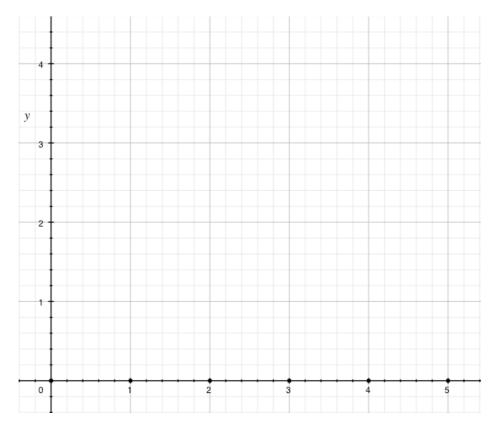
<u>http://beijingshanmaths.org</u> Name : _____. Grade : <u>jiguanglaoshi@gmail.com</u> Junior 9.5 - Assign. #7 : Nov. 29 • 2011 -p.1/2

Sequences defined by recurrence (3)

Problem I : Let f be the function defined by $f(x) = \frac{4x-2}{x+1}$ for $x \ge 0$.


Study of the sequence (v_n) defined by $v_{n+1} = f(v_n) = \frac{4v_n - 2}{v_n + 1}$; $n \ge 1$ and $v_0 = 4$.

- 1. Graph the function f on $[0; +\infty)$ and draw the first terms of the sequence (v_n) . Find the coordinates of the intersection of (Cf) with the first bisector (y = x)Indicate from the graph whether or not the sequence is :
 - i. Monotonous (if yes how) :
 - ii. Bounded (*if yes, what are the boundaries* ?)
 - iii. Does-it seam to have a limit, if yes which one is it ?
- 2. Same questions if $v_0 = 0$, or $v_0 = 1$, or $v_0 = 1.5$ or $v_0 = 2$.

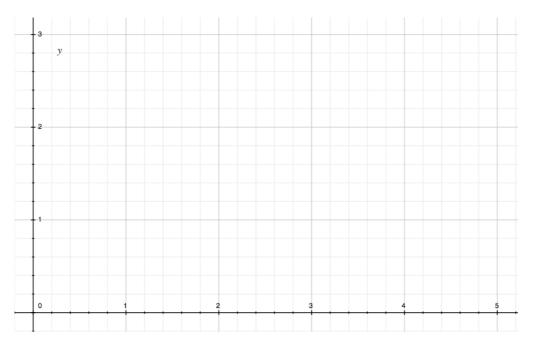
3. Let
$$w_n = \frac{V_n - 2}{V_n - 1}$$
 for any $n > 0$.

Show that the new sequence (w_n) is a **geometric** sequence :

- 1. Find its first term and its reason.
- 2. Find the expression of w_n directly in function of n.
- 3. Deduct the limit of w_{n} .
- 4. Find the expression of v_n in function of w_n
- 5. Find the limit of v_n
- 6. Check the result on your graph.

<u>http://beijingshanmaths.org</u> Name : _____. Grade : <u>jiguanglaoshi@gmail.com</u> Junior 9.5 - Assign. #7 : Nov. 29 • 2011 -p.2/2

Problem II : Let *f* be the function defined by $f(x) = -\frac{1}{2}x + 2$ for $x \ge 0$.


Study of the sequence (u_n) defined by $u_{n+1} = f(u_n) = -\frac{1}{2}u_n + 2$; $n \ge 1$ and $u_0 = 0$.

- 1. Graph the function f on $[0; +\infty [$ and draw the first terms of the sequence (u_n) . Find the coordinates of the intersection of (Cf) with the first bisector (y=x)Indicate from the graph whether or not the sequence is :
 - i. Monotonous (if yes how) :
 - ii. Bounded (if yes, what are the boundaries ?)
 - iii. Does-it seam to have a limit (if yes which one is it?)?
 - iv. Is this sequence Arithmetic or Geometric or neither ?

2. Let
$$v_n = u_n - \frac{4}{3}$$
 for any $n > 0$.

Show that the new sequence (v_n) is a **geometric** sequence :

- 1. Find its first term and its reason.
- 2. Find the expression of v_n directly in function of n.
- 3. Deduct the limit of v_n .
- 4. Find the expression of u_n in function of v_n
- 5. Find the limit of u_n
- 6. Check the result on your graph.

