http://beijingshanmaths.org Name :	•	<i>Grade</i> :
jiguanglaoshi@gmail.com Junior 9	5 - Assign. #5 : Nov. 15 • .	2011 -p.1/2

Numerical Sequences (2)

Problem I : Let f be the function defined by $f(x) = \frac{1}{2}x + 4$ for $x \ge 0$.

Study the Sequence defined by the formula $u_n = f(n) = \frac{1}{2}n + 4$ for every $n \in \mathbb{N}$.

- a. Graph the function f on $[0; +\infty[$ and draw the first terms of the sequence (u_n) . Indicate from the graph whether or not the sequence is :
 - i. Monotonous (if yes how):
 - ii. Bounded (if yes, what are the boundaries?)
 - iii. Does-it seem to have a limit (if yes which one is it?)?
 - b. Prove that (u_n) is increasing
 - c. Explain why (u_n) is not bounded and goes to $+\infty$

Problem II : Let f be the function defined by $f(x) = \frac{1}{2}x + 4$ for $x \ge 0$.

Study of the sequence (v_n) defined by $v_{n+1} = f(v_n) = \frac{1}{2}v_n + 4$; $n \ge 1$ and $v_0 = 3$.

- 1. Graph the function f on $[0; +\infty[$ and draw the first terms of the sequence (v_n) . Find the coordinates of the intersection of (Cf) with the first bisector (y = x) Indicate from the graph whether or not the sequence is:
 - i. Monotonous (if yes how):
 - ii. Bounded (if yes, what are the boundaries?)
 - iii. Does-it seam to have a limit, if yes which one can it be?
- 2. Let $w_n = v_n 8$ for any n > 0.

Show that the new sequence (w_n) is a **geometric** sequence:

- 1. Find its first term and its reason.
- 2. Find the expression of w_n directly in function of n.
- 3. Deduct the limit of w_n .
- 4. Find the expression of v_n in function of w_n
- 5. Find the limit of v_n
- 6. For which value of n do we have $7.999 < v_n < 8$

