Numerical Sequences (2)

Problem I : Let f be the function defined by $f(x)=\frac{1}{2} x+4$ for $\mathrm{x} \geq 0$.
Study the Sequence defined by the formula $u_{n}=f(n)=\frac{1}{2} n+4$ for every $\mathrm{n} \in \mathrm{N}$.
a. Graph the function f on $\left[0 ;+\infty\right.$ [and draw the first terms of the sequence $\left(\mathrm{u}_{\mathrm{n}}\right)$.

Indicate from the graph whether or not the sequence is :
i. Monotonous (if yes how) :
ii. Bounded (ifyes, what are the boundaries?)
iii. Does-it seem to have a limit (if yes which one is it?)?
b. Prove that $\left(u_{n}\right)$ is increasing
c. Explain why $\left(u_{n}\right)$ is not bounded and goes to $+\infty$

Problem II : Let f be the function defined by $f(x)=\frac{1}{2} x+4$ for $\mathrm{x} \geq 0$.
Study of the sequence (v_{n}) defined by $v_{n+1}=f\left(v_{n}\right)=\frac{1}{2} v_{n}+4 ; \mathrm{n} \geq 1$ and $v_{0}=3$.

1. Graph the function f on $\left[0 ;+\infty\right.$ [and draw the first terms of the sequence $\left(v_{n}\right)$.

Find the coordinates of the intersection of (Cf) with the first bisector $(y=x)$
Indicate from the graph whether or not the sequence is :
i. Monotonous (if yes how) :
ii. Bounded (if yes, what are the boundaries?)
iii. Does-it seam to have a limit, if yes which one can it be ?
2. Let $w_{n}=v_{n}-8$ for any $n>0$.

Show that the new sequence $\left(\mathrm{w}_{\mathrm{n}}\right)$ is a geometric sequence :

1. Find its first term and its reason.
2. Find the expression of w_{n} directly in function of n .
3. Deduct the limit of w_{n}.
4. Find the expression of v_{n} in function of w_{n}
5. Find the limit of v_{n}
6. For which value of n do we have $7.999<v_{n}<8$

