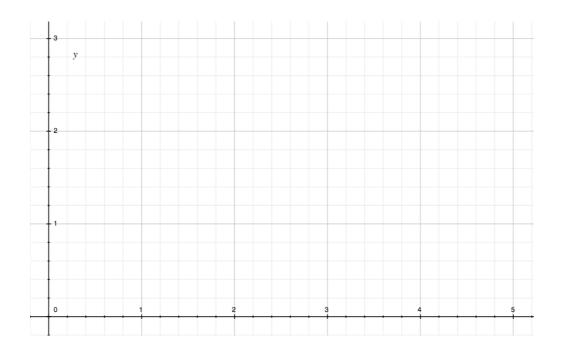
Numerical Sequences

Problem I : Let f be the function defined by $f(x) = \frac{2x+3}{x+4}$ for $x \ge 0$.

Study the Sequence defined by the formula $u_n = f(n) = \frac{2n+3}{n+4}$ for every $n \in N$.

- a. Graph the function f on $[0; +\infty [$ and draw the first terms of the sequence (u_n) . Indicate from the graph whether or not the sequence is :
 - i. Monotonous (if yes how) :
 - ii. Bounded (if yes, what are the boundaries ?)
 - iii. Does-it seem to have a limit (if yes which one is it?)?
 - b. Prove that (u_n) is increasing
 - c. Prove that (u_n) is bounded by 0 and 2.
 - d. Find for which value of n we have : $2 10^{-2} < u_n < 2$



Problem II : Let f be the function defined by $f(x) = \frac{2x+3}{x+4}$ for $x \ge 0$.

Study of the sequence (v_n) defined by $v_{n+1} = f(v_n) = \frac{2v_n + 3}{v_n + 4}$; $n \ge 1$ and $v_0 = 4$.

1. Graph the function f on $[0; +\infty [$ and draw the first terms of the sequence (v_n) . Find the coordinates of the intersection of (Cf) with the first bisector (y = x)Indicate from the graph whether or not the sequence is :

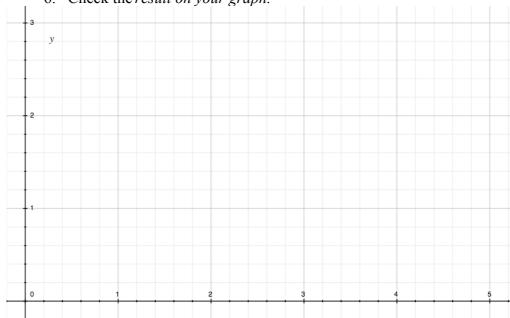
- i. Monotonous (if yes how) :
- ii. Bounded (if yes, what are the boundaries ?)
- iii. Does-it seam to have a limit, if yes which one is it ?

$$V_n - 1$$

2. Let
$$W_n = \frac{n}{V_n + 3}$$
 for any $n > 0$.

Show that the new sequence (w_n) is a **geometric** sequence :

- 1. Find its first term and its reason.
- 2. Find the expression of w_n directly in function of n.
- 3. Deduct the limit of $w_{n.}$
- 4. Find the expression of v_n in function of w_n
- 5. Find the limit of v_n
- 6. Check the result on your graph.



3.