4 heures avec calculatrice

exercice 1 (5 points)

Le plan complexe est rapporté au repère orthonormal (O, \vec{u}, \vec{v}) .

1. On considère les points A, B et C d'affixes respectives

$$z_A = 2 + 2i$$
, $z_B = 2i$ et $z_C = 2$

ainsi que le cercle (Γ) de centre A et de rayon 2.

La droite (OA) coupe le cercle (Γ) en deux points H et K tels que OH < OK. On note z_H et z_K les affixes respectives des points H et K,

- a. Faire une figure en prenant 1 cm comme unité graphique.
- b. Calculer la longueur OA. En déduire les longueurs OK et OH.
- **c.** Justifier, à l'aide des notions de module et d'argument d'un nombre complexe, que

$$z_K = (2\sqrt{2} + 2)e^{i\frac{\pi}{4}}$$
 et $z_H = (2\sqrt{2} - 2)e^{i\frac{\pi}{4}}$.

Dans toute la suite, on considère l'application f du plan qui à tout point M d'affixe $z \ne 0$ associe le point $M \square$ d'affixe $z \square$ telle que : $z' = -\frac{4}{z}$

- **2. a.** Déterminer et placer les points images de B et C par f.
 - **b.** On dit qu'un point est invariant par f s'il est confondu avec son image. Déterminer les points invariants par f.
- **3. a.** Montrer que pour tout point M distinct de O, on a : $OM \times OM \square = 4$.
 - **b.** Déterminer $arg(z \square)$ en fonction de arg(z).
- **4.** Soient $\mathbb{K}\square$ et $\mathbb{H}\square$ les images respectives de \mathbb{K} et \mathbb{H} par f .
 - a. Calculer OK□ et OH□.

b. Démontrer que
$$z_{K'} = (2\sqrt{2} - 2)e^{i\frac{3\pi}{4}}etz_{H'} = (2\sqrt{2} + 2)e^{i\frac{3\pi}{4}}$$

c. Expliquer comment construire les points K' et H' en utilisant uniquement la règle et le compas à partir des points K et H. Réaliser la construction.

exercice 2(5 points)

Partie 1

Soit g la fonction définie sur $]0,+\infty[$ par : $g(x) = x - \ln x$.

- a. Etudier les variations de g
- **b.** En déduire que pour tout réel x de $]0,+\infty[$, $g(x) \ge 1$

Partie 2

On considère la fonction f définie sur $]0,+\infty[$ par : $f(x)=\frac{\ln x}{x-\ln x}$ et on note Γ sa courbe représentative dans le plan muni d'un repère orthonormal.(unité 5cm)

- **a.** Justifier que f est bien définie sur]0,+∞[
- **b.** Déterminer la limite de f en 0 Interpréter graphiquement.
- **c.** Déterminer la limite de f en +∞. Interpréter graphiquement.
- **d.** Etudier les variations de f (tableau demandé)
- **e.** Soit le point A(0 ;-1). On considère le point M(x,f(x)) pour x>0 Déterminer le coefficient θ directeur de la droite (AM) en fonction de x puis sa limite lorsque x tend vers 0
- f. Interpréter graphiquement ce résultat.
- **g.** Tracer Γ .

exercice 3 (5 points)

Soit f la fonction définie sur **R** par f(x) = x+2- $\frac{4e^x}{e^x+3}$.

On désigne par C sa courbe représentative dans le plan rapporté à un repère orthonormal $(0, \vec{i}, \vec{j})$ d'unité graphique 2 cm.

- **1. a.** Déterminer la limite de f en $-\infty$.
 - **b.** Démontrer que la droite D_1 d'équation y=.x + 2 est asymptote à la courbe C.
 - **c.** Etudier la position de C par rapport à D_1 .
- **2. a.** On note f' la dérivée de f. Démontrer que pour tout réel x, on a : $f'(x) = \left(\frac{e^x 3}{e^x + 3}\right)^2$.
 - **b.** Etudier les variations de f sur **R** et dresser le tableau de variations de la fonction f.
- **3. a.** Que peut-on dire de la tangente D_2 à la courbe C au point I d'abscisse ln3 ?
 - **b.** En utilisant les variations de la fonction f, étudier la position de C par rapport à D_2 .
- **4. a.** Montrer que la tangente D_3 à la courbe C au point d'abscisse 0 a pour équation $y = \frac{1}{4}x+1$.
 - **b.** Etudier la position de C par rapport à la tangente D_3 sur l'intervalle $]-\infty$, $\ln 3[$. On pourra pour cela utiliser la dérivée seconde de f notée f^{**} et on pourra admettre que $f^{**}(x) = \frac{12e^x(e^x 3)}{(e^x + 3)^3}$.
- **5.** Démontrer que le point I est centre de symétrie de la courbe C.
- **6.** Tracer la courbe C, les tangentes D_2 , D_3 et les asymptotes à la courbe C. On rappelle que l'unité graphique est 2 cm.

exercice 4 (5 points)

- **1.** Soit $f: x \mapsto x \ln(1+x)$ la fonction définie et dérivable sur]-1; $+\infty$ [
- **a.** Etudier les variations de f sur]-1; + ∞ [, en déduire les inégalités :

pour tout
$$x \in]0,+\infty[$$
, $\ln(1+x) < x$

et pour tout
$$x \in]0;1[, ln(1-x) < -x$$

b. En déduire en utilisant $\frac{1}{p}$ et $\frac{1}{p+1}$ que pour tout entier p tel que $p \ge 1$,

on a:
$$\frac{1}{p+1} < \ln(1+\frac{1}{p}) < \frac{1}{p}$$

2. Soient (u_n) et (v_n) les suites définies pour $n \ge 1$ par

$$u_n = 1 + \frac{1}{2} + ... + \frac{1}{n} - \ln n$$
 et $v_n = 1 + \frac{1}{2} + ... + \frac{1}{n} - \ln(n+1)$

- **a.** Calculer u_1 , u_2 , v_1 et v_2 . Donner pour u_2 et v_2 un encadrement d'amplitude 0,01.
- **b.** Démontrer que (u_n) est décroissante et que (v_n) est croissante.
- c. Démontrer que (u_n) et (v_n) sont adjacentes.
- **d.** Démontrer que leur limite commune, notée γ et appelée constante d'Euler vérifie : $0,40 < \gamma < 0,81$.
- **3.** Déterminer $\lim_{n\to+\infty} (u_{2n}-u_n)$. En déduire $\lim_{n\to+\infty} (\sum_{k=1}^n \frac{1}{n+k})$

