TS / L.Barbier BAC BLANC DE MATHEMATIQUES du 17 déc 2008

4 heures avec calculatrice

exercice 1 (5 points)

exercice 2(5 points)

Partie 1

Soit g la fonction définie sur $]0,+\infty[$ par : $g(x) = x - \ln x$.

a. Etudier les variations de g

$$g'(x)=1 - \frac{1}{x} = \frac{x-1}{x}$$
 a le signe de $x-1$ car $x>0$

donc sur [0;1], g est strictement décroissante et $sur [1;+\infty[$, g est strictement croissante

b. En déduire que pour tout réel x de $]0,+\infty[$, $g(x) \ge 1$ donc g admet en x=1 un minimum qui vaut $g(1)=1-\ln 1=1-0=1$ donc $[sur]0,+\infty[$, $g(x) \ge 1]$

Partie 2

On considère la fonction f définie sur $]0,+\infty[$ par : $f(x)=\frac{\ln x}{x-\ln x}$ et on note Γ sa courbe représentative dans le

plan muni d'un repère orthonormal.(unité 5cm)

a. Justifier que f est bien définie sur $]0,+\infty[$ soit x>0 : d'après la question précédente, on a $g(x) \ge 1>0$ donc $g(x) \ne 0$

De plus, ln x est défini. Donc f est bien définie sur]0,+∞] **b.** Déterminer la limite de f en 0 Interpréter graphiquement.

b. Déterminer la limite de f en 0 Interpréter graphiquement. en zéro, on a une forme indéterminée et c'est ln x qui devrait être prépondérant :

$$\lim_{x \to 0} f = \lim_{x \to 0} \frac{\ln x}{x - \ln x} = \lim_{x \to 0} \frac{\ln x}{\ln x (\frac{x}{\ln x} - 1)} = \lim_{x \to 0} \frac{1}{-1 + \frac{x}{\ln x}} = \frac{1}{-1 + 0} = -1. \ Donc \left[\lim_{x \to 0} f = -1 \right]$$

On peut en déduire que les points de la courbe d'abscisse proche de zéro sont proches du point A(0 ;-1) (pourtant,A ne fait pas partie de la courbe car f n'est pas définie en zéro).

c. Déterminer la limite de f en $+\infty$. Interpréter graphiquement. en $+\infty$, on a une forme indéterminée et c'est x qui devrait être prépondérant :

$$\lim_{t \to \infty} f = \lim_{x \to +\infty} \frac{\ln x}{x - \ln x} = \lim_{x \to +\infty} \frac{\ln x}{x (1 - \frac{\ln x}{x})} = \lim_{x \to +\infty} \frac{\ln x}{x} \times \frac{1}{1 - \frac{\ln x}{x}} = 0 \times \frac{1}{1 - 0} = 0 \times 1 = 0.$$
 Donc $\lim_{t \to \infty} f = 0$

On peut en déduire que Γ admet la droite d'équation y=0 comme asymptote horizontale en + ∞

d. Etudier les variations de f (tableau demandé)

$$f'(x) = \frac{\frac{1}{x} \times (x - \ln x) - \ln x \times (1 - \frac{1}{x})}{(x - \ln x)^2} = \dots = \frac{1 - \ln x}{(x - \ln x)^2} \text{ a donc le signe de } 1 - \ln x$$

Résolvons $1 - \ln x > 0$ ssi $\ln x < 1$ ssi $\ln x < \ln e$ ssi x < e car $\ln e$ st strictement croissante. D'où :

11000	100113 1	111 X > 0 331	III X 1	SSI III A	·111 C 331 X	· C Cui	iii esi siiicie
X	0			e			+∞
f'		+				-	
f	-1		→				0

e. Soit le point A(0;-1). On considère le point M(x,f(x)) pour x>0

Déterminer le coefficient θ directeur de la droite (AM) en fonction de x puis sa limite lorsque x tend vers 0

$$\overrightarrow{AM}(x-0; f(x)-(-1)) \ donc \ \theta = \frac{f(x)+1}{x} = (\frac{\ln x}{x-\ln x}+1) \times \frac{1}{x} = \dots = \frac{x}{x-\ln x} \times \frac{1}{x} = \frac{1}{x-\ln x}. \ Donc \ \theta = \frac{1}{x-\ln x}$$

f. Interpréter graphiquement ce résultat.

$$\lim_{x \to 0} \frac{1}{x - \ln x} = 0 \quad car \quad \lim_{x \to 0} (x - \ln x) = -\infty$$

Donc au voisinage de A, la courbe Γ a une direction proche de l'horizontale (si A était un point de Γ , on pourrait parler de tangente horizontale en A)

g. Tracer Γ . tracez

exercice 3 (5 points)
exercice 4 (5 points)

