Calculs élémentaires dans les Nombres Complexes

(Calculatrices inutiles)

EXERCICE I [6 points]

1°) On considère 2 nombres complexes donnés sous forme algébrique :

$$z_1 = -1 + i\sqrt{3}$$
 et $z_2 = 1 + i$

- a) Déterminer le module et un argument (mod. 2π) de z_1 et z_2 .
- b) Ecrire z_1 et z_2 sous forme trigonométrique et sous forme exponentielle.
- c) Dans le plan complexe rapporté à un repère orthonormé direct $\mathcal{R} = [O, (\vec{u}, \vec{v})]$ construire les points A et B d'affixes respective z_1 et z_2 .

2°) On pose
$$z_3 = \frac{z_1}{z_2}$$

- a) Déterminer le module et un argument de z_3 .
- b) Ecrire z₃ sous forme trigonométrique puis sous forme algébrique.
- c) Construire l'image C de z₃ dans le plan complexe.
- d) En déduire les valeurs exactes de $\cos(\frac{5\pi}{12})$ et $\sin(\frac{5\pi}{12})$
- 3°) Soit D l'image du point A dans la rotation de centre O et d'angle $\frac{2\pi}{3}$
 - a) Déterminer le module et un argument de l'affixe z₄ du point D.
 - b) Montrer que $z_4 = \overline{z_1}$
 - c) Soit E l'image du point D dans la rotation de centre O et d'angle $\frac{2\pi}{3}$
 - d) Déterminer l'affixe z₅ du point E.

4°) Soit
$$Z = \frac{z_4 - z_5}{z_1 - z_5}$$

- a) Calculer le module et l'argument de Z.
- b) E n déduire la nature du triangle ADE.

EXERCICE II [5 points] On pose $Z = \sqrt{2 + \sqrt{2}} - i\sqrt{2 - \sqrt{2}}$.

- 1. Calculer Z² sous forme algébrique.
- 2. Déterminer le module et l'argument de Z^2
- 3. Écrire Z^2 sous forme exponentielle et sous forme trigonométrique.
- 4. En déduire la forme exponentielle de Z.
- 5. Puis en déduire la valeur exacte de $\cos(\frac{\pi}{8})$ et $\sin(\frac{\pi}{8})$

EXERCICE III [4 points]

Dans le plan complexe rapporté à un repère orthonormé direct $\mathcal{R} = [O, (\vec{u}, \vec{v})]$ (Unité : 2 carreaux),

On considère les 4 points A, B, C, D d'affixes respectives :

$$z_A = -i$$
, $z_B = 3$, $z_C = 2 + 3i$, $z_D = -1 + 2i$

- 1°) Placer les points A,B,C,D sur la figure.
- 2°) Interpréter géométriquement le module et l'argument du complexe

$$Z = \frac{z_C - z_A}{z_D - z_B}$$

- 3°) Calculer Z sous forme algébrique.
- 4°) En déduire le module et l'argument de Z
- 5°) Que peut-on en conclure pour les segments [AC] et [BD]
- 6°) En déduire la nature du quadrilatère ABCD.

Calculs élémentaires dans les Nombres Complexes (Calculatrices inutiles)

EXERCICE IV [5 points]

Dans le plan complexe rapporté à un repère orthonormé direct $\mathcal{R} = [O, (\vec{u}, \vec{v})]$ (Unité : 2 cm). On pose $j = e^{2i\frac{\pi}{3}}$.

- 1°) Vérifier que 1, j, j^2 sont solutions de l'équation $z^3 = 1$.
- 2°) On appelle A, B, C les images respectives de 1, j, j²
 - i. Construire A, B, C dans le plan
 - ii. Que peut-on dire du triangle ABC ? Justifier la réponse.
- 3°) Calculer $(1 j)(1 + j + j^2)$
- 4°) en déduire que $1 + j + j^2 = 0$
- 5°) Vérifier que $e^{i\frac{\pi}{3}} + j^2 = 0$
- 6°) Montrer que $j^2 = \bar{j}$
- 7°) Calculer de même $1 + \bar{j} + \bar{j}^2$