Primitives et Intégrales

(Calculatrices conseillées!)

EXERCICE I [8 points]

- 1. Soit g la fonction définie sur l'intervalle]1; $+\infty$ [par $g(x) = \frac{1}{x(x^2 1)}$
 - a. Déterminer les nombres réels a, b, c, tels que l'on ait pour tout x > 1:

$$g(x) = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x-1}$$

- $g(x) = \frac{a}{x} + \frac{b}{x+1} + \frac{c}{x-1}$
b. Trouver une primitive G de g sur l'intervalle]1 ; +\infty[.
- 2. Soit f la fonction définie sur l'intervalle]1; +\infty[par $f(x) = \frac{2x}{(x^2 1)^2}$

Trouver une primitive F de f sur l'intervalle $]1; +\infty[$

- 3. Soit h la fonction définie par $h(x) = f(x) \ln x$ sur l'intervalle $[1, +\infty[$
 - a. Démontrer la relation suivante : $h(x) = (F(x).\ln x)' + g(x)$
 - b. En déduire une primitive H de h sur l'intervalle $]1; +\infty[$
 - c. Calculer $I = \int_{2}^{3} \frac{2x}{(x^2 1)^2} \ln x . dx$
 - d. Donner le résultat exact sous la forme

$$p.\ln 2 + q.\ln 3$$

où p et q sont deux nombres Rationnels que l'on déterminera.

EXERCICE II [6 points]

1. Calculer les deux intégrales suivantes :

$$A = \int_0^1 \frac{e^x}{1 + e^x} dx \qquad \text{et} \qquad B = \int_0^1 \frac{e^x}{(1 + e^x)^2} dx$$

$$B = \int_0^1 \frac{e^x}{(1 + e^x)^2} dx$$

- 2. Déterminer trois nombres Réels a, b, c tels que pour tout nombre Réel positif ou nul on ait : $\frac{1}{(1+t)^2} = a + \frac{bt}{1+t} + \frac{ct}{(1+t)^2}$
- 3. En posant $t = e^x$ dans l'égalité précédente calculer l'intégrale :

$$I = \int_0^1 \frac{1}{(1 + e^x)^2} dx$$

EXERCICE III [6 points]

Soit f l'application définie sur]0; $+\infty$ [par $f(x) = x - 4 + \frac{\ln x}{4}$ et C_f sa courbe représentative dans un repère orthonormal.

- 1. Calculer les limites de f aux bornes de l'intervalle]0; $+\infty[$ Justifier que C_f admet une asymptote et en donner une équation.
- 2. a. Etudier les variations de f sur l'intervalle]0 ; +∞[et dresser le tableau des variations.
 - b. En déduire que l'équation f(x) = 0 admet une solution unique α sur l'intervalle [3 ; 4].
 - c. Tracer C_f
- 3. Soit D le domaine limité par C_f l'axe des abscisses, et les droites d'équations respectives $x = \alpha$ et x = 4.
 - a. Calculer pour x > 0 la dérivée de la fonction $u: x \mapsto x \ln x$
 - b. En utilisant le résultat précédent calculer l'aire du domaine D à l'aide d'un polynôme du second degré en α .