

Fonctions Inverses • Hyperboles équilatères

Indiquez vos réponses directement sur ces feuilles

Rappel des propriétés de l'Hyperbole équilatère (H) d'équation $y = \frac{A}{x}$

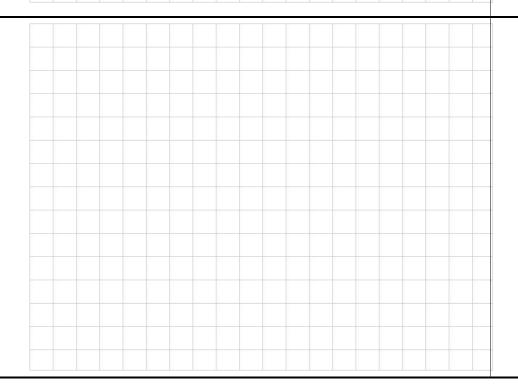
- (i) (H) a pour centre de symétrie le centre O du repère.
- (ii) (H) passe par les points (1;A) et son symétrique (A;1) par rapport à la bissectrice des axes.
- (iii) Si A > 0 (H) coupe la $1^{\text{ère}}$ bissectrice au point (\sqrt{A}, \sqrt{A}) et au point $(-\sqrt{A}, -\sqrt{A})$
- (iv) Si A <0 (H) coupe la 2^e bissectrice au point ($\sqrt{-A}$; $-\sqrt{-A}$) et au point ($-\sqrt{-A}$; $\sqrt{-A}$)
- (v) Les axes (Ox) et (Oy) sont des asymptotes pour les branches d'hyperbole.
- **I.1** Construire dans un repère orthonormal (unité = 2 carreaux) les Hyperboles représentatives des fonctions définies par les équations suivantes (utiliser des couleurs différentes).

$$\bullet (\mathbf{H}_1) \ \ y = \frac{1}{x}$$

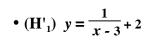
• (**H**₂)
$$y = \frac{-1}{x}$$

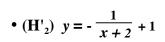
$$\bullet (H_3) \ y = \frac{4}{x}$$

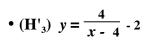
• (H₄)
$$y = \frac{-4}{x}$$

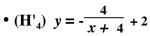

I.2. *Idem*.

$$\bullet (\mathbf{H}_5) \ \ y = \frac{1}{4x}$$

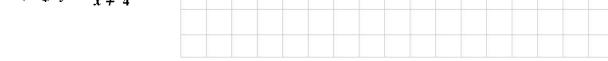

• (H₆)
$$y = \frac{-1}{4r}$$

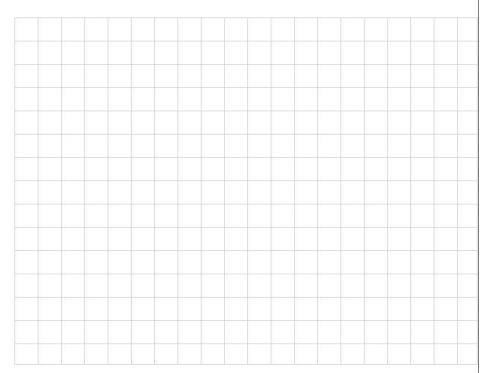

• (H₇)
$$y = \frac{25}{9x}$$


• (H₈)
$$y = \frac{-9}{25x}$$



II.1. Tracer avec soin les Hyperboles (\mathcal{H}) d'équation de la forme $y = \frac{A}{x-L} + H$ en effectuant le changement de variable associé au changement de repère défini par X = x - L et Y = y - H d'où $Y = \frac{A}{X}$





II.2. Mettre l'expression $y = \frac{ax + b}{cx + d}$ sous la forme $y = \frac{A}{x - L} + H$ puis placer l'hyperbole correspondante dans le repère orthonormal ci-dessous en respectant les symétries et les asymptotes.

• (H'₅)
$$y = \frac{x-1}{x+3}$$

Déterminer A, H, L pour
mettre cette expression sous la
forme $y = \frac{A}{x+3} + H$

et construire l'hyperbole.

• (H'₆)
$$y = \frac{2x+5}{x-2}$$

Déterminer A, H, L pour mettre cette expression sous la forme $y = \frac{A}{x-2} + H$

et construire l'hyperbole.