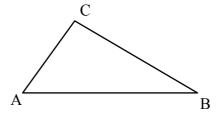
ÉCOLE ALSACIENNE jml@ecole-alsacienne.org 2005-2006

MATHÉMATIQUES - 2^{de}2 TD N°3 - p.1/2 8 nov.-05

CONFIGURATIONS • VECTEURS • ALIGNEMENT • PARALLÉLISME

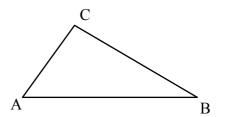

DIFFICULTE I	Indiquez vos réponses directement sur ces feuilles	i
I.0. Etant donné un triangle ABC, I le milieu de [AB] et J le milieu de [BC], démontrer rigoureusement		
par 3 méthodes différentes que le segment [IJ]	est parallèle à la base et que $IJ = \frac{1}{2}BC$	
1°) Méthode des parallélogrammes	A A B C	2pts
2°) Méthode de Thalès		2pts
3°) Méthode Vectorielle		2pts

I.1. Etant donné le triangle ABC ci-dessous, on donne les 3 points M,N,P définis par :

$$\overrightarrow{AM} = \overrightarrow{AC} - \overrightarrow{AB}$$
; $\overrightarrow{AN} = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{AC})$; $\overrightarrow{AP} = 2\overrightarrow{AC} + 2\overrightarrow{CB}$

- 1°) Construire les points M,N,P sur la figure ci-dessous.
- 2°) Démontrer que $\overrightarrow{AM} + \overrightarrow{AP} = 2\overrightarrow{AN}$. Que peut-on en déduire pour N.?

- 3pts
- 2pts

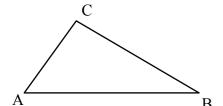


I.2. Soient A,B,C trois points du plan et X le point défini par la relation

$$\overrightarrow{XA} - \overrightarrow{XB} + 2\overrightarrow{XC} = \overrightarrow{O}$$
.

Déterminer X par une relation de la forme $\overrightarrow{AX} = \overrightarrow{V}$ et le construire sur la figure :

I.3. Soient A,B,C trois points alignés tels que C soit le milieu de [AB], et M un point quelconque du plan.


$$\overrightarrow{V} = \overrightarrow{MA} + \overrightarrow{MB} - 2 \overrightarrow{MC}$$

Montrer que \overrightarrow{V} est indépendant de M et indiquer sa valeur en fonction de A, B, C.

I.4. Soient M et N les points définis sur un triangle ABC par les relations :

$$\overrightarrow{AM} = \frac{3}{4} \overrightarrow{AB}$$
 et $\overrightarrow{AN} = \frac{3}{4} \overrightarrow{AC}$

Démontrer vectoriellement que (MN) est parallèle à (BC).

3pts