USING THE QUADRATIC FORMULA 293

8-4 SOLVING QUADRATIC EQUATIONS BY USING THE QUADRATIC FORMULA

Any quadratic equation may be solved by completing the square. When the general quadratic equation. $ax^2 + bx + c = 0$, $a \ne 0$, is solved in this way, the result is the quadratic formula.

$$ax^{2} + bx + c = 0$$

$$ax^{2} + bx = -c$$

$$D_{a} \qquad x^{2} + \frac{b}{a}x = -\frac{c}{a}$$

Complete the square for the left member and add the same number to the right member.

$$x^{2} + \frac{b}{a}x + \left(\frac{b}{2a}\right)^{2} = \left(\frac{b}{2a}\right)^{2} - \frac{c}{a}$$

$$x^{2} + \frac{b}{a}x + \frac{b^{2}}{4a^{2}} = \frac{b^{2}}{4a^{2}} - \frac{c}{a}$$

$$may \longrightarrow \left(x + \frac{b}{2a}\right)^{2} = \frac{b^{2} - 4ac}{4a^{2}}$$

In developing this for better students you may $\longrightarrow \left(x+\frac{b}{2a}\right)^2=\frac{b^2-4ac}{4a^2}$ wish to write the form $x^2-a^2=0$. Then factor, (x + a)(x - a) = 0 and use the fact that one or the other factor must be zero.

$$x + \frac{b}{2a} = \pm \frac{\sqrt{b^2 - 4ac}}{2a}$$

$$x + \frac{b}{2a} = \frac{\sqrt{b^2 - 4ac}}{2a} \qquad \text{or} \quad x + \frac{b}{2a} = -\frac{\sqrt{b^2 - 4ac}}{2a}$$
$$x = -\frac{b}{2a} + \frac{\sqrt{b^2 - 4ac}}{2a} \qquad x = -\frac{b}{2a} - \frac{\sqrt{b^2 - 4ac}}{2a}$$
$$x = \frac{-b + \sqrt{b^2 - 4ac}}{2a} \qquad x = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

THE QUADRATIC FORMULA

For the quadratic equation $ax^2 + bx + c = 0$, $a \ne 0$, the solutions are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Remind students that the right member represents two numbers: Ask sluden

to identify them.

To use the quadratic formula for solving a quadratic equation, replace a, b, and c in the formula by the corresponding coefficients from the equation.

EXAMPLE 1 Solve $x^2 + 2x - 3 = 0$. Use the quadratic formula.

solution Comparing the equations

$$ax^{2} + bx + c = 0$$
 and $x^{2} + 2x - 3 = 0$.

we see that a = 1, b = 2, and c = -3

Replacing a, b, and c by these numbers in the quadratic

formula gives
$$x = \frac{-2 \pm \sqrt{2^2 - 4(1)(-3)}}{2(1)}$$

$$=\frac{-2\pm\sqrt{16}}{2}$$
$$=\frac{-2\pm4}{2}$$

 $=\frac{-2\pm\sqrt{16}}{2}$ In solving quadratic equations, have students write the formula once, if at all, on their paper. In the solution itself, they should utilize the format of the formula to $= \frac{-2 \pm 4}{2}$ structure the expression formula each time. structure the expression for x without having to write the

$$x = -1 \pm 2$$

 $x = -1 + 2$ or $x = -1 - 2$
 $x = 1$ | $x = -3$

CHECK

The check is left for the student.

EXAMPLE 2 Solve $3x^2 - 4x - 2 = 0$

SOLUTION $3x^2 - 4x - 2 = 0$. a = 3. b = -4. c = -2

By the formula,
$$x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4(3)(-2)}}{2 \cdot 3}$$

$$= \frac{4 \pm \sqrt{40}}{6}$$

$$= \frac{4 \pm 2\sqrt{10}}{6}$$

$$= \frac{2 \pm \sqrt{10}}{6}$$

 $=\frac{4\pm2\sqrt{10}}{6}$ For equations having irrational-number solutions, the student may approximate the solution with a decimal. Then, checking the approximate solution would provide good practice in using a calculator.

$$x = \frac{2}{3} + \frac{\sqrt{10}}{3}$$
 or $x = \frac{2}{3} - \frac{\sqrt{10}}{3}$

CHECK

$$3x^2 - 4x - 2 = 0$$

$$3\left(\frac{2}{3} + \frac{\sqrt{10}}{3}\right)^2 - 4\left(\frac{2}{3} + \frac{\sqrt{10}}{3}\right) - 2 \stackrel{?}{=} 0$$
$$3\left(\frac{4}{9} + \frac{4\sqrt{10}}{9} + \frac{10}{9}\right) - 4\left(\frac{2}{3} + \frac{\sqrt{10}}{9}\right) - 2 \stackrel{?}{=} 0$$

$$\frac{4}{3} + \frac{4\sqrt{10}}{3} + \frac{10}{3} - \frac{8}{3} - \frac{4\sqrt{10}}{3} - 2 \stackrel{?}{=} 0$$

$$0 = 0$$

The check for $x = \frac{2}{3} - \frac{\sqrt{10}}{3}$ is left for the student.