Suites Numériques

I - Suites définies directement ou par récurrence.

Soit f la fonction définie par $f(x) = \frac{2x+3}{x+4}$ pour $x \ge 0$.

- A- Etude de la suite (u_n) définie par $u_n = f(n) = \frac{2n+3}{n+4}$ pour tout $n \in \mathbb{N}$.
 - 1°) Représenter la fonction f sur $[0,+\infty[$ (unités 4cm) et les premiers termes de (u_n) Indiquer d'après la figure le comportement de la suite (u_n) : bornes ? Sens de variation ? Limite ?
 - 2°) Démontrer que (u_n) est croissante.
 - 3°) Démontrer que (u_n) est majorée par 2.
 - 4°) Déterminer à partir de quel rang N on a la double inégalité 2- $\varepsilon < u_n < 2$, avec $\varepsilon = 10^{-2}$.
- 5°) Démontrer que pour tout $n \ge 1$ on a $|u_n 2| \le \frac{5}{n}$. Conclusion?

 B- Etude de la suite définie par $v_{n+1} = f(v_n) = \frac{2v_n + 3}{v_n + 4}$ pour tout $n \ge 1$ et $v_0 = 4$.
- 1°) a) Représenter la fonction f sur $[0,+\infty[$ (unités 4cm) et les premiers termes de (v_n) .
 - b) Calculer les coordonnées de l'intersection de (C_f) avec la bissectrice y = x.
 - c) Indiquer d'après la figure le comportement de la suite (v_n) : bornes ? Sens de variation ? Limite ?
- 2°) Démontrer par récurrence à l'aide du sens de variation de f que pour tout $n \ge 0$ on a $1 \le v_n \le 4$ (P_n) [On établira pour cela que la propriété (P_n) est vraie pour n = 0 et héréditaire i.e. (P_n) implique (P_{n+1})
- 3°) Démontrer par récurrence que (v_n) est décroissante.
- 4°) On pose, pour tout $n \in N$, $\frac{\mathbf{v_n} = \frac{\mathbf{v_n} 1}{\mathbf{v_n} + 3}}{\mathbf{v_n} + 3}$. Démontrer que $(\mathbf{w_n})$ est une suite géométrique dont on indiquera la raison et le premier terme.
- 5°) Exprimer w_n en fonction de n. En déduire sa limite. Exprimer v_n en fonction de w_n. Puis en déduire la limite de v_n.

II - Suites géométriques et Numération décimale

- 1°) Soit a un chiffre compris entre 1 et 9. On pose $u_n = a.10^n$ et $S_n = u_1 + u_2 + ... + u_n$. Écrire S_n en fonction de n et de a. Déterminer la limite S de S_n en fonction de a.
- 2°) Écrire le nombre 0,333 333 sous la forme de S_n précédente et déduire du résultat trouvé en 1° que l'écriture décimale illimitée 0, 333 333 333 ... (une infinité de 3) représente un nombre rationnel que

III - Etude directe de $u_n = 2n+3 - \sqrt{4n^2+4n+5}$.

Démontrer que quelque soit n on a $|u_n-2| \le \frac{2}{n}$. En déduire la limite de la suite (u_n) .

IV - Suite définie par récurrence : $u_{n+1} = \sqrt{6 - u_n}$ avec $u_0 = 0$.

- 1°) Représenter graphiquement les premiers termes de la suite (u_n).
- 2°) Démontrer que la propriété (P_n) : $0 \le u_n \le 3$ est héréditaire
- 3°) Démontrer que pour tout $n \in N$ on a $|u_n 2| \le \frac{1}{2} |u_{n-1} 2|$.
- 4°) En déduire que pour tout $n \in N$ on a $|u_n 2| \le \frac{1}{2^{n-1}}$. Conclusion ?

V - Somme des carrés des n premiers entiers.

- 1°) Déterminer le polynôme P(x) du troisième degré tel que P(0) = 0, et pour tout x réel $P(x + 1) - P(x) = x^2$
- 2°) En utilisant cette relation calculer la somme :

$$S_n = 1^2 + 2^2 + 3^2 + ... + n^2$$

- 3°) Montrer que le résultat obtenu peut se mettre sous la forme
- 4°) Démontrer cette formule par récurrence.

$$S_n = \frac{n(n+1)(2n+1)}{6}$$