Dans un pays imaginaire noté I, il y a une capitale P et un ensemble de villages V. Au 1^{er} janvier 2006, P et V comptaient respectivement 200 000 et 300 000 habitants.

Chaque année, la population de P augmente de 10%, alors que celle de V diminue de 20 000 habitants.

- 1. a. Au 1^{er} janvier 2006, quel pourcentage représente la population de P par rapport à celle de I ?
 - b. Calculer la population de P, celle de V puis celle de I au 1^{er} janvier 2007, quel pourcentage représente alors la population de P par rapport à celle de I ?
- 2. Soit n un entier naturel. On note p_n la population de P au 1^{er} janvier (2006 + n) ainsi $p_0 = 200\,000$.
 - a. Exprimer p_{n+1} en fonction de p_n et en déduire la nature de la suite (p_n) .
 - b. Exprimer p_n en fonction de n. Calculer p_5 . Que représente cette valeur ?
- 3. Soit n un entier naturel. On note v_n la population de V au 1^{er} janvier (2006 + n), ainsi $v_0 = 300~000$.
 - a. Exprimer v_{n+1} en fonction de v_n et en déduire la nature de la suite (v_n) .
 - b. Exprimer v_n en fonction de n. Calculer v_5 . Que représente cette valeur ?
- 4. Un tableur donne dans la colonne A les années de 2006 à 2011, dans la colonne B la population de la capitale P, dans la colonne C la population de l'ensemble des villages V et dans la colonne D la population totale du pays I au 1^{er}janvier de l'année correspondante.

	Α	В	С	D
1	Année	Population de P au 1 ^{er} Janvier	Population de V au 1 ^{er} Janvier	Population de I au 1 ^{er} Janvier
2	2006	200 000	300 000	
3				
4				
5				
6				
7				

- a. Indiquer les formules qu'il faudrait écrire dans les cellules D2, A3, B3 et C3 afin d'obtenir automatiquement, en recopiant vers le bas, les années dans la colonne A et les populations dans les colonnes B, C et D.
- b. Compléter le tableau.
- 5. a. Représenter graphiquement l'évolution de la population de P et celle de V en plaçant les points de coordonnées $(n; p_n)$ et $(n; v_n)$ lorsque l'entier n varie de 0 à 5. On prendra comme unités graphiques : 2 c. pour une année sur l'axe des abscisses et 1 c pour 10 000 habitants sur l'axe des ordonnées qui sera gradué à partir de 200 000 habitants.
 - b. Donner l'année x au cours de laquelle la population de P dépasse celle de V.
 - c. En supposant linéaire l'évolution des populations de P et de V au cours de l'année x déterminer graphiquement le trimestre au cours duquel la population de P dépasse celle de V, en faisant apparaître tous les tracés utiles.

Dans un pays imaginaire noté I, il y a une capitale P et un ensemble de villages V. Au 1^{er} janvier 2006, P et V comptaient respectivement 300 000 et 400 000 habitants.

Chaque année, la population de P augmente de 15%, alors que celle de V diminue de 30 000 habitants.

- 1. a. Au 1^{er} janvier 2006, quel pourcentage représente la population de P par rapport à celle de I ?
 - b. Calculer la population de P, celle de V puis celle de I au 1^{er} janvier 2007, quel pourcentage représente alors la population de P par rapport à celle de I ?
- 2. Soit n un entier naturel. On note p_n la population de P au 1^{er} janvier (2006 + n) ainsi $p_0 = 300\,000$.
 - a. Exprimer p_{n+1} en fonction de p_n et en déduire la nature de la suite (p_n) .
 - b. Exprimer p_n en fonction de n. Calculer p_5 . Que représente cette valeur ?
- 3. Soit n un entier naturel. On note v_n la population de V au 1^{er} janvier (2006 + n), ainsi $v_0 = 400\,000$.
 - a. Exprimer v_{n+1} en fonction de v_n et en déduire la nature de la suite (v_n) .
 - b. Exprimer v_n en fonction de n. Calculer v_5 . Que représente cette valeur ?
- 4. Un tableur donne dans la colonne A les années de 2006 à 2011, dans la colonne B la population de la capitale P, dans la colonne C la population de l'ensemble des villages V et dans la colonne D la population totale du pays I au 1^{er}janvier de l'année correspondante.

	Turnite Correspondence.						
	Α	В	С	D			
1	Année	Population de P au 1 ^{er} Janvier	Population de V au 1 ^{er} Janvier	Population de I au 1 ^{er} Janvier			
2	2006	300 000	400 000				
3							
4							
5							
6							
7							

- a. Indiquer les formules qu'il faudrait écrire dans les cellules D2, A3, B3 et C3 afin d'obtenir automatiquement, en recopiant vers le bas, les années dans la colonne A et les populations dans les colonnes B, C et D.
- b. Compléter le tableau.
- 5. a. Représenter graphiquement l'évolution de la population de P et celle de V en plaçant les points de coordonnées (n ; p_n) et (n ; v_n) lorsque l'entier n varie de 0 à 5. On prendra comme unités graphiques : 2 c. pour une année sur l'axe des abscisses et 1 c pour 10 000 habitants sur l'axe des ordonnées qui sera gradué à partir de 300 000 habitants.
 - b. Donner l'année x au cours de laquelle la population de P dépasse celle de V.
 - c. En supposant linéaire l'évolution des populations de P et de V au cours de l'année x déterminer graphiquement le trimestre au cours duquel la population de P dépasse celle de V, en faisant apparaître tous les tracés utiles.